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LElTER TO THE EDITOR 

Coupling between longitudinal and transverse fluctuations in 
a Heisenberg ferromagnet 

R S Fishmant and S H Liu 
Solid SlaLe DMsion, PO Box XM8, Oak Ridge National Lab, Oak Ridge, TN 37831, 
USA 

Received M May 1991 

AbslraeL The coupling between the longitudinal and transverse fluctuations in a spin 
s ferromagnet be"= significant above a crossMer temperature T z Tc-3. Ti~Ihir 
coupling produces a splitting of the spin-wave resonance near the energy I Js, where I 
is the Modination number and J the coupling constant. We calculate the t r a m  
mode frcquencis and pro- an experiment to detect the longitudinal fluctuations. 

For some time, scientists (see, e.g., [1,2]) have wondered about the nature and ob- 
servability of longitudinal fluctuations in a ferromagnet. The spin-wave (sw) theory 
developed by Dyson [3] and others [4,5] provides a wealth of predictions about the 
low-temperature properties of the transverse excitations. But it says nothing about 
the longitudinal fluctuations, which are expected to become important at higher tem- 
peratures. Although the evidence for spin-waves is abundant, longitudinal excitations 
have only been observed very close to the Curie temperature [6,7]. In this letter, we 
show that the coupling between the transverse and longitudinal fluctuations becomes 
significant above the temperature TJs, where s is the spin. The longitudinal 
fluctuations of a pair of spins can excite a propagating, precessional mode with an 
energy near zJs, where J is the ferromagnetic coupling constant and z is the number 
of nearest neighbours in the lattice. Due to the coupling between the sw and pre- 
cessional modes, the two transverse modes repel at the energy zJs. If the damping 
of the precessional mode is sufficiently weak, this repulsion would be observed as a 
splitting of the transverse resonance peak. 

To evaluate the mode frequencies of a ferromagnet, we employ a systematic 
expansion of the transverse correlation function. This technique produces a coupling 
term that is exponentially small at low temperatures but becomes signiiicant above the 
crossover temperature 5?. Because the sw approximation omits this term, it neglects 
the coupling between the sw and precessional modes. Since this technique will be 
explained in greater detail in future papers [SI, we briefly sketch the method here. 

The Hamiltonian of the Heisenberg femmagnet in zero field is 

t Permanent address: Department of Physics, SU Station Box 5564 North Dakota Stale University, Fargo, 
ND 58105-5566 USA. 
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where J > 0 and the spins obey the commutation relations 

Is,;,spjl = -i6;jEm&., (2) 

with ti = 1. In order to calculate the correlation function and mode frequencies, we 
split the Hamiltonian into a mean-field (MF) part He,, a constant term H,, and a 
fluctuation term H,: 

H = He, + Hi t H ,  (3) 

He, = - r J  MO Si ,  (4) 

H ,  = $ N z J M O 2  (5) 

i 

H z = - J C { ( S i ,  -Mo)(Sj,-Mo)+S;,Sj.,+si,sj,}. (6) 

The MF order parameter M,(T*)  = (S,,),,, which is a function only of T* = 
T / z J  and s, is evaluated by neglecting H,. Notice that H, couples the local spin 
fluctuations on neighbouring lattice sites. As z increases, the mean-field z J M ,  
experienced by each spin becomes stronger and the couplmg of fluctuations becomes 
weaker. So the effects of H ,  can be studied with a 1 / z  expansion about MF theory 

We use this decomposition of the Hamiltonian to evaluate the spin-spin correla- 
[91. 

tion function 

D(k,iw,,) = C e - i k ' R ~ ~ , ; ( i w , )  (7) 

DiJ(iwn) = - d r e ' w " r ( T , S + ( r ) S ~ ~ ( 0 ) )  (8) 

i 

ip 
where SF = Sj, i Siy, w, = 2nvT are the Matsubara frequencies, p = 1/T, 
Ri are the lattice vectors with R, = 0, T, is the time ordering operator, and the 
Heisenberg operator A ( T )  is defined by 

A ( + )  = e r H A e C H .  (9) 

The transverse mode frequencies are poles in the correlation function D(k, tu), which 
is obtained from D(k,iw,,) by the substitution iw, 4 w t i6. If the exact Hamil- 
tonian H is replaced by the MF Hamiltonian He,, then the Matsubara correlation 
function is given by 

where A, = z J M , .  
More generally, the exact correlation function can be expressed as 

D(')(k,iw,) 
1 - D(O)(k,iw,)C(k,iw,) D(k,iw,) = 
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where the self-energy C ( k ,  iw,) embodies the correlation of fluctuations produced 
by Hz.  This relation can inverted to yield the defiition of the self-energy 

The correlation function may be written in the form of (11) because D(O)(k,iw,) is 
non-zero for all k and all n. 

lb evaluate the mode frequencies, we expand the self-energy in powers of l/z as 

C(k,iw,) - 1 - a,+ -a1 +. . . . 
ZJ  Z 

Each coefficient am is a function only of the dimensionless quantities iw,/zJ, T*, 
s, and dimensionless functions like 

where 6 are the nearest-neighbour vectors. Since the sum in (14) runs over z ditferent 
vectors, -yk is of order 1 rather than of order 1/z. 

The functions a, are evaluated by first expanding every correlation function 
Di.(iw,) in powers of l / z .  Fourier-transforming then yields the 1/z expansion of 
D(k,iw,). Finally, (12) provides the expansion of the self-energy. 'Ib evaluate 0,. 
we must expand Dli(iwn) to order l / z m ,  where Ri is m lattice vectors removed 
from R, = 0. The fourier transform of (7) then sums over the P / m !  equivalent 
sites Ri oriented symmetrically about R, = 0. The evaluation of o1 requires the 
l / z m + l  correction to Dl,(iwn) for all R,. We have also used this method 1.31 to 
calculate the static, longitudinal correlation function in the paramagnetic state. As 
expected, the long-range correlations diverge at the true, shifted Curie temperature 
191. A related technique has been used by Gros and Johnson [lo] to evaluate the 
1/z corrections to the self-energy of a spin lL? antiferromagnet at zero temperature. 

Up to order 1/z, the self-energy is given by 

(15) 1 = - y y k  

where 

and s,, = S,, - M,. 'Ib order l / z ,  the corrected order parameter M = (Slz) is 
given by MO + M , / z ,  where M,(T*)  was previously calculated in [9]. 

Using (11) for the correlation function, we arrive at the final result 

b J I Z  1 D(k,iw,) = 2 M  iw, - A(1 - yk) - -(1 - yk)( f, + ifz)}-;19) Z iw, - A 
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where A = z J M  is now proportional to the corrected order parameter. Replacing 
iw, by w + i6 and setting D(k,w)-'  = 0 yields the mode frequencies. 

To zero order in 1 /z. the correlation function has a pole at w = A,( 1 -yk), which 
is the result of the random phase approximation [ll] (RPA) for the sW frequency. 
Aside from renormalizing the order parameter, the first-order self-energy u1 contains 
two correction terms, fl and fz. The fz term is produced by the interaction between 
pairs of spin-waves. This term is also contained in the sw theory of Dyson [3] and 
Maleev [4] (DM). So in the absence of the fl term in the self-energy, the corrected 
sw frequency of (19) agrees with the DM resulr 

Unlike the fi term, fl introduces new dynamics into the correlation function. 
Including the fl term in m1, we find the astonishing result that the correlation 
function now has two poles: one close to the DM frequency, the other close to 
A. The correction term fl is produced by the coupling between the longitudinal 
and transverse Ructuations. At low temperatures, when longitudinal fluctuations are 
suppressed, fl 0: e-zJs/T can be neglected. But above the crossover temperature 
[12] w 0 .2zJs ,  longitudinal Ructuations are possible and fi is significant. 

The mode frequencies are plotted in figure 1 for a cubic lattice with s = 1/2, 
z = 6, and T*/s (s  + 1) = 0.15. At very low temperatures, the sw frequency 
zJs( 1 - y,,) and the precessional frequency zJs cross without repelling. But above 
T ,  the coupling term fl causes the hvo transverse branches to repel at the mode- 
crossing point yk = 0. The magnitude of the splitting between the branches at 
y,, = 0 is of order l / f i  rather than of order 1/z. 

25 _. 
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Figure 1. The mode frequencies w / r J s  versus yk 
for s = 1/2. z = 6. and T*/s ( s+  1) = 0.15. 
The spin-wave frequency with fi set to zero is 
plotted as the dashed lint 

Yf 

Flgurc 2. The imaginary par( of D(k ,  w )  versus 
w / z J a  Cor y. = 0 and r = r J f j .  AU other 
parameters as in figure 1. 

Because it alters the spin commutation relations of (2). the sw approximation mis- 
handles the subtle relationship between the longitudinal and transverse fluctuations. 
When the spin operators are replaced by the creation and annihilation operators of 
the sw approximation, the coupling term fl vanishes. Setting fl to zero would elim- 
inate the second pole in the correlation function and yield the DM frequency plotted 
as the dotted line of figure 1. 

The precessional mode is excited by longitudinal fluctuations on neighbouring 
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lattice sites. A longitudinal fluctuation forces the local spin to precess around the 
mean field z J M  with the precession frequency A rather than with the sW frequency 
wk. Because this local fluctuation couples with the surrounding spins, the preces- 
sion propagates through the lattice with a frequency which is shifted from A by 
dispersion. When wk is very different from A, the coupling between the sw and 
precessional modes is weak. But when wk is close to A, the mixing between the sw 
and precessional modes induces a large shift in both of their energies. 

We must carefully distinguish the precessional mode from longitudinal excitations, 
which are dispersionless and have zero frequency [1,6-8]. Longitudinal excitations 
have been directly observed [6,7] only very close to the Curie temperature. U n l i e  
longitudinal excitations, the precessional mode is dispersive and propagates through 
the lattice: to order 1/z in the self-energy, the mode couples each site with every 
other site in the lattice. Although induced by the longitudinal fluctuations of a pair 
of spins, the precessional mode is fundamentally a transverse excitation of the lattice; 
above T,  the spectral weight of the transverse correlation function is shared by the 
precessional and sW modes. 

Our results for the mode frequencies assume that the 1 / z  expansion of the self- 
energy converges above T.  Because spin-waves destroy the long-range order of the 
spins in two dimensions, the 1/z expansion about the ordered state (Si*)  = MO is 
justified only in three dimensions. Although we cannot prove that ol/z provides the 
dominant correction to the zeroader  self-energy uo in three dimensions, there are 
strong indications that the 1/z expansion yields sensible results. First, uo generates 
the expected, lowestader RPA frequency. Even this calculation involves the non- 
trivial summation of the l / zm correction to every correlation function. Second, each 
term in ul/z can be interpreted physically. While the fz term is produced by the 
interactions between spin-waves, as found by Dyson 131, the fl term is produced by 
the coupling between transverse and longitudinal fluctuations. 

Unfortunately, our expansion technique cannot be used to calculate the damping 
of the sw and precessional modes above T. Because the widths rl and Tz of the sw 
and precessional modes are non-analytic functions of l /z ,  they vanish to any finite 
order in the expansion. As argued by Vaks, Larkin, and Pikin [l], the damping of 
the transverse modes at high temperatures is dominated by the coupling between the 
transverse and longitudinal fluctuations. Hence, it seems rather likely that both r l / J  
and r Z / J  are of the same order as the coupling term fl. In fact, the expression for 
rl calculated by Vaks et a1 is indeed a non-analytic function of l / z  and proportional 
to Jfl. Although their result is probably not valid above T,  it still serves as a useful 
estimate for the damping of the modes. 

Although rl and rz are generally quite different, they become equal near the 
mode-massing point. So when yk 0, we may replace w by w -ir in the correlation 
function and use the result of Vaks et nl to estimate r = zJf l .  In figure 2, we plot 
the imaginary part of D ( h ,  w )  versus w for rk = 0. The splitting of the spin-wave 
resonance into two peaks can be clearly seen. Since the sw and precessional modes 
are completely mixed at this point in k space, neutron scattering measurements will 
couple to both branches. As lykl increases, the mixing of the modes decreases and 
the precessional peak becomes weaker. W i l e  the precessional mode survives when 
yb = -1, its residue vanishes in the long-wavelength limit k 3 0 and yk + 1. For 
s = 1/2, both peaks should be observable even for Iykl as large as 1/3. But for 
larger values of the spin, the mode splitting may be observable only for rather small 
values Of IyJ. 
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The mode repulsion might be detectable in a narrow window of temperatures. If 
T < T ,  both fi and the spectral weight of the precessional mode are negligible. But 
if the temperature is sufficiently high that is of the same order as A, then only the 
sw branch will be observable. Hence, the best temperature to observe the splitting is 
slightly above the crossover temperature T s 0.2239 so that f, is significant but r 
is still small compared With A. 

However, if the precessional mode is overdamped so that rz B A, then the 
mode splitting may be impossible to observe at any temperature. This seems to 
be the case for EuO [13], which has a spin of 7/2 and a coordination number of 
z = 12. But even if the splitting is not observable, the attenuation of the transverse 
resonance should become anomalously large in the immediate vicinity of the mode- 
crossing point. It may also be possible to observe the systematic deviations of the 
sw frequencies from the predictions of Dyson and Maleev. Like the mode splitting, 
these effects should become more pronounced with smaller spin. 

To summarize, we have proposed a method to study the effects of longitudinal 
fluctuations in a ferromagnet. A pair of longitudinal fluctuations may excite a pre- 
cessional mode of the lattice. Above the crossover temperature T and near the 
mode-crossing point yk = 0, the coupling between the precessional and SW modes 
produces a splitting of the transverse resonance peak. If the damping of the pre- 
cessional mode is sufficiently weak, this splitting may be obsewable through neutron 
scattering measurements. 
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